Orienting Cayley graphs generated by transposition trees

نویسندگان

  • Eddie Cheng
  • László Lipták
  • Nart Shawash
چکیده

Day and Tripathi [K. Day, A. Tripathi, Unidirectional star graphs, Inform. Process. Lett. 45 (1993) 123–129] proposed an assignment of directions on the star graphs and derived attractive properties for the resulting directed graphs. Cheng and Lipman [E. Cheng, M.J. Lipman, On the Day–Tripathi orientation of the star graphs: Connectivity, Inform. Process. Lett. 73 (2000) 5–10; E. Cheng, M.J. Lipman, Connectivity properties of unidirectional star graphs, Congr. Numer. 150 (2001) 33–42] studied the connectivity properties of these unidirectional star graphs. The class of star graphs is a special case of Cayley graphs generated by transposition trees. In this paper, we give directions on these graphs and study the connectivity properties of the resulting unidirectional graphs. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diameter of Cayley graphs of permutation groups generated by transposition trees

Let Γ be a Cayley graph of the permutation group generated by a transposition tree T on n vertices. In an oft-cited paper [2] (see also [14]), it is shown that the diameter of the Cayley graph Γ is bounded as diam(Γ) ≤ max π∈Sn {

متن کامل

A kind of conditional connectivity of transposition networks generated by k-trees

For a graph G = (V,E), a subset F ⊂ V (G) is called an Rk-vertex-cut of G if G − F is disconnected and each vertex u ∈ V (G) − F has at least k neighbors in G − F . The Rk-vertex-connectivity of G, denoted by κ (G), is the cardinality of the minimum Rk-vertex-cut of G, which is a refined measure for the fault tolerance of network G. In this paper, we study κ2 for Cayley graphs generated by k-tr...

متن کامل

Automorphism groups of Cayley graphs generated by connected transposition sets

Let S be a set of transpositions that generates the symmetric group Sn, where n ≥ 3. The transposition graph T (S) is defined to be the graph with vertex set {1, . . . , n} and with vertices i and j being adjacent in T (S) whenever (i, j) ∈ S. We prove that if the girth of the transposition graph T (S) is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the semidirect p...

متن کامل

Nonexistence of efficient dominating sets in the Cayley graphs generated by transposition trees of diameter 3

Let d, n be positive integers such that d < n, and let X n be a Cayley graph generated by a transposition tree of diameter d. It is known that every X n with d < 3 splits into efficient dominating sets. The main result of this paper is that X n does not have efficient dominating sets.

متن کامل

Automorphism groups of graphs

These lecture notes provide an introduction to automorphism groups of graphs. Some special families of graphs are then discussed, especially the families of Cayley graphs generated by transposition sets. Keywords—Automorphism groups of graphs; Cayley graphs; transposition sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2008